A Survey of Parallel Social Spider Optimization Algorithm based on Swarm Intelligence for High Dimensional Datasets

نویسندگان

  • B. Shanmugapriya
  • S. Meera
چکیده

Big data is the slightly abstract phase which describes the relationship between the data size and data processing speed in the system. The many new information technologies the big data deliver dramatic cost reduction, substantial improvements in the required time to perform the computing task or new product and service offerings. The several complicated specific and engineering problems can be transformed in to optimization problems. Swarm intelligence is a new subfield of computational intelligence (CI) which studies the collective intelligence in a group of simple intelligence. In the swarm intelligence, useful information can be obtained from the competition and cooperation of individuals. In this paper discussed about some of the optimization algorithms based on swarm intelligence such as Ant Colony optimization (ACO), Particle Swarm Algorithm (PSO), Social Spider Optimization (SSO) Algorithm and Parallel Social Spider Optimization (P-SSO) Algorithm. These optimization techniques are based on their merits, demerits and metrics accuracy, sum of intra cluster distance, Recovery Error Etc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A social spider algorithm for global optimization

The growing complexity of real-world problems hasmotivated computer scientists to search for efficient problem-solving methods. Metaheuristics based on evolutionary computa-tion and swarm intelligence are outstanding examples of nature-inspired solution techniques. Inspired by the social spiders, wepropose a novel Social Spider Algorithm (SSA) to solve globaloptimization...

متن کامل

A swarm optimization algorithm inspired in the behavior of the social-spider

Swarm intelligence is a research field that models the collective behavior in swarms of insects or animals. Several algorithms arising from such models have been proposed to solve a wide range of complex optimization problems. In this paper, a novel swarm algorithm called the Social Spider Optimization (SSO) is proposed for solving optimization tasks. The SSO algorithm is based on the simulatio...

متن کامل

Enhanced Comprehensive Learning Cooperative Particle Swarm Optimization with Fuzzy Inertia Weight (ECLCFPSO-IW)

So far various methods for optimization presented and one of most popular of them are optimization algorithms based on swarm intelligence and also one of most successful of them is Particle Swarm Optimization (PSO). Prior some efforts by applying fuzzy logic for improving defects of PSO such as trapping in local optimums and early convergence has been done. Moreover to overcome the problem of i...

متن کامل

Adaptive Particle Swarm Optimization (APSO) for multimodal function optimization

This research paper presents a new evolutionary optimization model based on the particle swarm optimization (PSO) algorithm that incorporates the flocking behavior of a spider. The search space is divided into several segments like the net of a spider. The social information sharing among the swarms are made strong and adaptive. The main focus is on the fitness of the swarms adjusting to the le...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017